2-METHOXY-1,2-DIHYDRORHAZIMINE, AN ALKALOID FROM LEAVES OF RHAZYA STRICTA

ATTA-UR-RAHMAN and SAJIDA KHANUM

H E. J Research Institute of Chemistry, University of Karachi, Karachi-32, Pakistan

(Received 9 August 1984)

Key Word Index-Rhazya stricta; Apocynaceae; alkaloids; rhazimine; NMR

Abstract—Studies on the alkaloids from the leaves of Rhazya stricta have afforded a new alkaloid to which the structure 2-methoxy-1,2-dihydrorhazimine has been assigned.

INTRODUCTION

Rhazya stricta belongs to the family Apocynaceae. It is abundantly distributed in various parts of Pakistan [1-3] and is widely used in the treatment of several diseases [4, 5]. It is specially reputed for its anti-tumour activities. A number of cytotoxic alkaloids have previously been reported from the plant [6, 7].

RESULTS AND DISCUSSION

The crude alkaloidal material isolated by conventional procedures [8, 9] was subjected to chromatographic separation to afford a substance which possessed a typical indoline UV spectrum. The IR spectrum (chloroform) showed the presence of ester and ketonic carbonyl groups and an imine group. High resolution mass spectrometry afforded $[M]^+$ at m/z 382.1895 which agreed with the mass calculated for the formula C₂₂H₂₆N₂O₄ (382.1893) indicating the presence of 11 double bond equivalents in the molecule. The base peak at m/z 122.0965 corresponded to the formula $C_8H_{12}N$ attributed to the ion (d) [10] which could arise by cleavage between the C-5 and C-16 bonds. The facile loss of methanol from the [M]+ suggested the presence of a methoxy group. The ¹H NMR spectrum (deuterochloroform) showed a three-proton doublet at $\delta 1.52$ ($J_1 = 7$ Hz, $J_2 = 2.5$ Hz) which was assigned to the ethylidine methyl group. A three-proton singlet at δ 3.14 was assigned to the methyl protons of the methoxy group while another three-proton singlet at δ 3.53 was assigned to the ester methyl group. A downfield one-proton singlet at $\delta 4.93$ was attributed to the C-2 proton. The olefinic proton of the ethylidene group resonated as a quartet at $\delta 5.5$ (J = 7 Hz). The aromatic protons appeared as complex multiplets in the region δ 6.5–7.5.

The substance was found to be highly labile, being readily transformed to a faster moving substance when kept in chloroform at 30° for 2-3 hr. The ¹H NMR spectrum of the transformation product showed the disappearance of the one-proton singlet for the C-2 proton at $\delta 4.93$ and the appearance of a low field singlet at $\delta 7.70$ due to the olefinic proton of the ketimine system in rhazimine [10]. This transformation product was identified as rhazimine [10], previously reported by us from the same plant, by direct comparison with an authentic

sample (co-chromatography, mp, IR, UV, ¹H NMR, mass spectrum). The ready transformation of the indoline to rhazimine bearing an indolenine chromophore strongly supported the conclusion that the methoxy group was located at C-2. The lack of a bond between C-2 and C-3 in rhazimine had previously been confirmed by gated spinecho measurements which had established the presence of a proton on C-2 (ketimine), and showed that C-3 and C-21 were both CH₂ groups [10–12]. The stereochemistry of 1 is not known.

The ¹³C NMR (deuterochloroform) of the alkaloid and its comparison with rhazimine is shown in Table 1. On the basis of these data, structure 1 is assigned to the alkaloid. The presence of 1 in the crude plant extract before contact with methanol was ascertained by TLC. This showed that 1 is a genuine natural product and not an artefact of isolation. The substance probably arises in the plant by hydration and subsequent methylation of rhazimine.

1626 Short Reports

Table 1. ¹³C-NMR spectral data of 2-methoxy-1,2-dihydrorhazimine (1) and rhazimine (2)

Carbon No.	2-Methoxy- 1,2-dihydro- rhazimine	Rhazimine
2	85.93	60.55
3	48.41	51.55
5	57.02	61.01
6	27.30	30.25
7	53.02	63.07
8	127.10	137.46
9	128.07	128.23
10	119.75	125.00
11	115.34	127.88
12	127.75	128.69
13	143.01	142.70
14	22.25	31.93
15	36.93	37.24
16	54.02	58.07
17		214.11
18	12.75	12.86
19	119.38	120.84
20	130.89	137.32
21	51.74	52.92
ОСН3	50.74	
Ester C=O	t	168.33
Ester OMe	51.81	52.01

^{*-†}Signals too weak to be detected. In the transformation product, rhazimine, the corresponding signals 'a' and 'b' appeared at δ 214.71 (ketone) and 168.33 (ester carbonyl), respectively

EXPERIMENTAL

Isolation of 2-methoxy-1,2-dihydrorhazimine. The crude alkaloidal material (170 g) isolated by the previously reported procedure [8, 9] from leaves of R. stricta Decaisne (45 kg) was subjected to flash chromatography over silica gel. The fraction obtained on elution with petrol-CHCl₃ (4:5) was concd to a gum (18 g) and again subjected to flash chromatography over silica gel. The fraction obtained on elution with CHCl₃-MeOH (25:3) afforded a mixture of five alkaloids, which was again loaded onto another silica gel column. Elution with mixtures of CHCl₃-MeOH of increasing polarity afforded a number of fractions. The fraction obtained on elution with CHCl₃-MeOH (10:1) afforded an alkaloid which was purified by prep. TLC on Al₂O₃ (Merck, Type E) to afford 52 mg of a white crystalline (hygroscopic) material which gave a dark pink colouration with CeSO₄, [α]_D (CHCl₃) + 85°. IR $\nu_{\rm CHCl_3}^{\rm CHCl_3}$ cm⁻¹: 3400 (NH), 1745 (keto C=O) and 1720 (ester C=O); UV $\lambda_{\rm max}^{\rm MeOH}$ nm: 210, 249 and 295; $\lambda_{\rm mic}^{\rm MeOH}$ nm: 232 and 275; ¹H NMR (CDCl₃): δ 1.52 (3H, dd, J_1 = 7 Hz, J_2 = 2.5 Hz, CH₃-HC=C), 3.14 (3H, s, -OCH₃), 3.53 (3H, s, C-OCH₃), 4.97 (1H, s, H-2), 5.5 (1H, q, J = 7 Hz >C=CH_-CH₃), 5.5-7.5 (4H, m, ArH); high resolution MS: 382.1895 ([M]⁺, 48% calc. for C₂₁H₂₃N₂O₄: 382.1893); 367.1672 (9.8%, calc. for C₂₁H₂₂N₂O₃: 350.1630 [M - MeOH]⁺); 323.1759 (15%, calc. for C₂₁H₂₂N₂O₃: 350.1630 [M - MeOH]⁺); 323.1759 (15%, calc. for C₂₆H₂₃N₂O₂: 323.1759); 263.1546 (16%, calc. for C₁₈H₁₉N₂: 163.1548); 218.1175 (48%, calc for C₁₃H₁₆NO₂: 218.1181); 182.0603 (24%, calc. for C₁₂H₈NO: 182.0606) [13]; 167.0693 (18%, calc. for C₁₂H₉N: 167.0734) [14]; 122.0966 (100%, calc. for C₈H₁₂N: 122.0969).

Conversion of 2-methoxy-1,2-dihydro-rhazimine (1) to rhazimine (2). 2-Methoxy-1,2-dihydrorhazimine (13 mg), was dissolved in CHCl₃ and allowed to stand for 2 hr at 30°. TLC on silica gel CHCl₃-MeOH (17:3) showed the formation of a faster moving spot which was separated by prep. TLC and crystallized from CHCl₃-MeOH (4:1) as colourless needles. The product was identified as rhazimine by direct chromatographic and spectral comparison (IR, UV, ¹H NMR, ¹³C NMR, MS) with an authentic sample.

REFERENCES

- Hooker, J. D. and Jackson, B. D. (1865) Indexkewesis, Vol. 4, p. 705 and suppl. 8 (1926-30). Clarendon Press, Oxford.
- 2. Bisset, N. G. (1958) Ann. Bogor, 3, 170.
- 3. Hooker, J. D. (1875) Flora of British India, Vol. 3, p. 540.
- 4. Anon (1926) Curtis Bot. Mag. 152, 9119.
- Atta-ur-Rahman and Fatima, K. (1983) Phytochemistry 22, 1017.
- Mukhopadhyay, S., Handy, G. A., Funayama, S. and Cordell, G. A. (1981) J. Nat. Prod. 44, 896.
- 7. Siddiqui, S. and Bukhari, A. Q. S. (1972) Nature 235, 393.
- Ahmad, Y., Fatima, K., Atta-ur-Rahman, Occolowitz, J. L., Solheim, B. A., Clardy, J., Garnick, R. L. and LeQuesne, P. W. (1977) J. Am. Chem. Soc. 99, 1943.
- 9. Atta-ur-Rahman and Khanum, S. (1984) Phytochemistry 23,
- 10 Atta-ur-Rahman and Khanum, S. (1984) Tetrahedron Letters 25, 3913.
- (Varian) Bhacca, N. S., Hollis, D. P., Johnson, L. F. and Pier, E. A. (1962-1963) High Resolution NMR Spectra Catalogue.
- Shamma, M. and Hidenlang, D. M. (1979) C-13 NMR Shift Assignments of Alkaloids. Plenum Press, New York.
- Hesse, M. (1974) Indolalkaloide, Teil 1: Text p. 178. Verlag Chemie. Weinheim.
- Biemann, K., Bommer, P., Burlingame, A. L. and McMurray,
 W. J. (1964) J. Am. Chem. Soc. 86, 4624.